Cobalt, 27Co
cobalt chips
Pronunciationt/ (About this soundlisten)[1]
Appearancehard lustrous bluish gray metal
Standard atomic weight Ar, std(Co)58.933194(3)[2]
Cobalt in the periodic table
CaesiumBariumLanthanumCeriumPraseodymiumNeodymiumPromethiumSamariumEuropiumGadoliniumTerbiumDysprosiumHolmiumErbiumThuliumYtterbiumLutetiumHafniumTantalumTungstenRheniumOsmiumIridiumPlatinumGoldMercury (element)ThalliumLeadBismuthPoloniumAstatineRadon


Atomic number (Z)27
Groupgroup 9
Periodperiod 4
Element category  Transition metal
Electron configuration[Ar] 3d7 4s2
Electrons per shell2, 8, 15, 2
Physical properties
Phase at STPsolid
Melting point1768 K ​(1495 °C, ​2723 °F)
Boiling point3200 K ​(2927 °C, ​5301 °F)
Density (near r.t.)8.90 g/cm3
when liquid (at m.p.)8.86 g/cm3
Heat of fusion16.06 kJ/mol
Heat of vaporization377 kJ/mol
Molar heat capacity24.81 J/(mol·K)
Vapor pressure
P (Pa)1101001 k10 k100 k
at T (K)179019602165242327553198
Atomic properties
Oxidation states−3, −1, 0, +1, +2, +3, +4, +5[3] (an amphoteric oxide)
ElectronegativityPauling scale: 1.88
Ionization energies
  • 1st: 760.4 kJ/mol
  • 2nd: 1648 kJ/mol
  • 3rd: 3232 kJ/mol
  • (more)
Atomic radiusempirical: 125 pm
Covalent radiusLow spin: 126±3 pm
High spin: 150±7 pm
Color lines in a spectral range
Spectral lines of cobalt
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for cobalt
Speed of sound thin rod4720 m/s (at 20 °C)
Thermal expansion13.0 µm/(m·K) (at 25 °C)
Thermal conductivity100 W/(m·K)
Electrical resistivity62.4 nΩ·m (at 20 °C)
Magnetic orderingferromagnetic
Young's modulus209 GPa
Shear modulus75 GPa
Bulk modulus180 GPa
Poisson ratio0.31
Mohs hardness5.0
Vickers hardness1043 MPa
Brinell hardness470–3000 MPa
CAS Number7440-48-4
Discovery and first isolationGeorg Brandt (1735)
Main isotopes of cobalt
Iso­topeAbun­danceHalf-life (t1/2)Decay modePro­duct
56Cosyn77.27 dε56Fe
57Cosyn271.79 dε57Fe
58Cosyn70.86 dε58Fe
60Cosyn5.2714 yβ, γ60Ni
| references

Cobalt is a chemical element with the symbol Co and atomic number 27. Like nickel, cobalt is found in the Earth's crust only in chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal.

Cobalt-based blue pigments (cobalt blue) have been used since ancient times for jewelry and paints, and to impart a distinctive blue tint to glass, but the color was later thought to be due to the known metal bismuth. Miners had long used the name kobold ore (German for goblin ore) for some of the blue-pigment-producing minerals; they were so named because they were poor in known metals, and gave poisonous arsenic-containing fumes when smelted. In 1735, such ores were found to be reducible to a new metal (the first discovered since ancient times), and this was ultimately named for the kobold.

Today, some cobalt is produced specifically from one of a number of metallic-lustered ores, such as cobaltite (CoAsS). The element is, however, more usually produced as a by-product of copper and nickel mining. The copper belt in the Democratic Republic of the Congo (DRC) and Zambia yields most of the global cobalt production. World production in 2016 was 116,000 tonnes (according to Natural Resources Canada), and the DRC alone accounted for more than 50%.[4]

Cobalt is primarily used in lithium-ion batteries, and in the manufacture of magnetic, wear-resistant and high-strength alloys. The compounds cobalt silicate and cobalt(II) aluminate (CoAl2O4, cobalt blue) give a distinctive deep blue color to glass, ceramics, inks, paints and varnishes. Cobalt occurs naturally as only one stable isotope, cobalt-59. Cobalt-60 is a commercially important radioisotope, used as a radioactive tracer and for the production of high-energy gamma rays.

Cobalt is the active center of a group of coenzymes called cobalamins. Vitamin B12, the best-known example of the type, is an essential vitamin for all animals. Cobalt in inorganic form is also a micronutrient for bacteria, algae, and fungi.


a sample of pure cobolt
A block of electrolytically refined cobalt (99.9% purity) cut from a large plate

Cobalt is a ferromagnetic metal with a specific gravity of 8.9. The Curie temperature is 1,115 °C (2,039 °F)[5] and the magnetic moment is 1.6–1.7 Bohr magnetons per atom.[6] Cobalt has a relative permeability two-thirds that of iron.[7] Metallic cobalt occurs as two crystallographic structures: hcp and fcc. The ideal transition temperature between the hcp and fcc structures is 450 °C (842 °F), but in practice the energy difference between them is so small that random intergrowth of the two is common.[8][9][10]

Cobalt is a weakly reducing metal that is protected from oxidation by a passivating oxide film. It is attacked by halogens and sulfur. Heating in oxygen produces Co3O4 which loses oxygen at 900 °C (1,650 °F) to give the monoxide CoO.[11] The metal reacts with fluorine (F2) at 520 K to give CoF3; with chlorine (Cl2), bromine (Br2) and iodine (I2), producing equivalent binary halides. It does not react with hydrogen gas (H2) or nitrogen gas (N2) even when heated, but it does react with boron, carbon, phosphorus, arsenic and sulfur.[12] At ordinary temperatures, it reacts slowly with mineral acids, and very slowly with moist, but not with dry, air.