Decay chain

In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly to a stable state, but rather undergo a series of decays until eventually a stable isotope is reached.

Decay stages are referred to by their relationship to previous or subsequent stages. A parent isotope is one that undergoes decay to form a daughter isotope. One example of this is uranium (atomic number 92) decaying into thorium (atomic number 90). The daughter isotope may be stable or it may decay to form a daughter isotope of its own. The daughter of a daughter isotope is sometimes called a granddaughter isotope.

The time it takes for a single parent atom to decay to an atom of its daughter isotope can vary widely, not only between different parent-daughter pairs, but also randomly between identical pairings of parent and daughter isotopes. The decay of each single atom occurs spontaneously, and the decay of an initial population of identical atoms over time t, follows a decaying exponential distribution, e−λt, where λ is called a decay constant. One of the properties of an isotope is its half-life, the time by which half of an initial number of identical parent radioisotopes have decayed to their daughters, which is inversely related to λ. Half-lives have been determined in laboratories for many radioisotopes (or radionuclides). These can range from nearly instantaneous (less than 10−21 seconds) to more than 1019 years.

The intermediate stages each emit the same amount of radioactivity as the original radioisotope (i.e. there is a one-to-one relationship between the numbers of decays in successive stages) but each stage releases a different quantity of energy. If and when equilibrium is achieved, each successive daughter isotope is present in direct proportion to its half-life; but since its activity is inversely proportional to its half-life, each nuclide in the decay chain finally contributes as many individual transformations as the head of the chain, though not the same energy. For example, uranium-238 is weakly radioactive, but pitchblende, a uranium ore, is 13 times more radioactive than the pure uranium metal because of the radium and other daughter isotopes it contains. Not only are unstable radium isotopes significant radioactivity emitters, but as the next stage in the decay chain they also generate radon, a heavy, inert, naturally occurring radioactive gas. Rock containing thorium and/or uranium (such as some granites) emits radon gas that can accumulate in enclosed places such as basements or underground mines.[1]


All the elements and isotopes found on Earth, with the exceptions of hydrogen, deuterium, helium, helium-3, and perhaps trace amounts of stable lithium and beryllium isotopes which were created in the Big Bang, were created by the s-process or the r-process in stars, and for those to be today a part of the Earth, must have been created not later than 4.5 billion years ago. All the elements created more than 4.5 billion years ago are termed primordial, meaning they were generated by the universe's stellar processes. At the time when they were created, those that were unstable began decaying immediately. All the isotopes which have half-lives less than 100 million years have been reduced to 2.8×10−12% or less of whatever original amounts were created and captured by Earth's accretion; they are of trace quantity today, or have decayed away altogether. There are only two other methods to create isotopes: artificially, inside a man-made (or perhaps a natural) reactor, or through decay of a parent isotopic species, the process known as the decay chain.

Unstable isotopes decay to their daughter products (which may sometimes be even more unstable) at a given rate; eventually, often after a series of decays, a stable isotope is reached: there are about 200 stable isotopes in the universe. In stable isotopes, light elements typically have a lower ratio of neutrons to protons in their nucleus than heavier elements. Light elements such as helium-4 have close to a 1:1 neutron:proton ratio. The heaviest elements such as lead have close to 1.5 neutrons per proton(e.g. 1.536 in lead-208). No nuclide heavier than lead-208 is stable; these heavier elements have to shed mass to achieve stability, most usually as alpha decay. The other common decay method for isotopes with a high neutron to proton ratio (n/p) is beta decay, in which the nuclide changes elemental identity while keeping the same mass and lowering its n/p ratio. For some isotopes with a relatively low n/p ratio, there is an inverse beta decay, by which a proton is transformed into a neutron, thus moving towards a stable isotope; however, since fission almost always produces products which are neutron heavy, positron emission is relatively rare compared to electron emission. There are many relatively short beta decay chains, at least two (a heavy, beta decay and a light, positron decay) for every discrete weight up to around 207 and some beyond, but for the higher mass elements (isotopes heavier than lead) there are only four pathways which encompass all decay chains. This is because there are just two main decay methods: alpha radiation, which reduces the mass by 4 atomic mass units (amu), and beta, which does not change the atomic mass at all (just the atomic number and the p/n ratio). The four paths are termed 4n, 4n + 1, 4n + 2, and 4n + 3; the remainder from dividing the atomic mass by four gives the chain the isotope will use to decay. There are other decay modes, but they invariably occur at a lower probability than alpha or beta decay. (It should not be supposed that these chains have no branches: the diagram below shows a few branches of chains, and in reality there are many more, because there are many more isotopes possible than are shown in the diagram.) For example, the third atom of nihonium-278 synthesised underwent six alpha decays down to mendelevium-254, followed by an electron capture (a form of beta decay) to fermium-254, and then a seventh alpha to californium-250, upon which it would have followed the 4n + 2 chain as given in this article. However, the heaviest superheavy nuclides synthesised do not reach the four decay chains, because they reach a spontaneously fissioning nuclide after a few alpha decays that terminates the chain: this is what happened to the first two atoms of nihonium-278 synthesised, as well as to all heavier nuclides produced.

Three of those chains have a long-lived isotope (or nuclide) near the top; this long-lived isotope is a bottleneck in the process through which the chain flows very slowly, and keeps the chain below them "alive" with flow. The three long-lived nuclides are uranium-238 (half-life=4.5 billion years), uranium-235 (half-life=700 million years) and thorium-232 (half-life=14 billion years). The fourth chain has no such long lasting bottleneck isotope, so almost all of the isotopes in that chain have long since decayed down to very near the stability at the bottom. Near the end of that chain is bismuth-209, which was long thought to be stable. Recently, however, bismuth-209 was found to be unstable with a half-life of 19 billion billion years; it is the last step before stable thallium-205. In the distant past, around the time that the solar system formed, there were more kinds of unstable high-weight isotopes available, and the four chains were longer with isotopes that have since decayed away. Today we have manufactured extinct isotopes, which again take their former places: plutonium-239, the nuclear bomb fuel, as the major example has a half-life of "only" 24,500 years, and decays by alpha emission into uranium-235. In particular, we have through the large-scale production of neptunium-237 successfully resurrected the hitherto extinct fourth chain.[2] The tables below hence start the four decay chains at isotopes of californium with mass numbers from 249 to 252.